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HEATING AND MELTING OF ASPHALT–PARAFFIN PLUGS

IN OIL-WELL EQUIPMENT USING AN ELECTROMAGNETIC RADIATION

SOURCE OPERATING IN A PERIODIC MODE

UDC 532.546:536.421V. A. Balakirev, G. V. Sotnikov,

Yu. V. Tkach, and T. Yu. Yatsenko

This paper considers the elimination of asphalt–paraffin plugs in wellbore equipment using a high-
frequency radiation source which is energized and de-energized periodically. The dynamics of melting
of plugs is analyzed numerically. The time of removal of plugs is determined with variation in the
off-duty ratio of the operating cycle of the high-frequency oscillator and the time of its continuous
operation in a cycle.

Introduction. At present, the high-frequency (HF) method holds much promise for elimination of paraffin
plugs in oil-well and pipeline equipment [1–4]. This is due to its rather simple clean technological implementation
and high effectiveness. In contrast to other methods of breaking asphalt–paraffin plugs, the HF method uses a
volumetric nature of heat release and melting of asphalt–paraffin plugs [3, 4]. In this case, most of the heat is
expended in implementation of the phase transition, whereas in the other thermal methods, the energy input is
expended mainly in overheating of the surface layers of oil and is lost as a result of heat exchange with the ambient
medium.

For optimal operation of a “microwave furnace,” it is necessary to select the radiation frequency such that
the power supplied to the HF source is used in heating and fusion of a plug with maximum efficiency [3, 4]. However,
even in the optimal regime, the operating time of the HF generator is a few hours to tens of hours, depending on
the radiation source power and the volume of the paraffin plug. Thus, a HF generator with a power of 10 kW
and a frequency of f = 10 MHz eliminates a 100-m-long paraffin plug in an oil well (the radius of the inner pipe
of wellbore equipment R1 = 1.8 cm and the radius of the outer pipe R2 = 5 cm) within 34 h of continuous-wave
operation [4]. It is clear that continuous-wave operation of a HF electromagnetic radiation source for a long time
involves technical difficulties. Therefore, there is the question of the sensitivity of the HF method for eliminating
paraffin plugs when the supply is disconnected for a long time because of faulty operation or preventive work.

The present paper deals with the melting of paraffin plugs by a HF oscillator energized and de-energized
periodically.

Basic Physical Assumptions and Mathematical Model of the Process. A wellbore is a system of
two coaxial metal pipes. From a physical viewpoint, the wellbore equipment is equivalent to a coaxial transmission
line. Let us consider a coaxial line whose internal space is filled with a dielectric (paraffin) with permittivity ε. For
a mathematical description of the process, we use cylindrical coordinates (r, ϕ, z). We assume that the longitudinal
dimension of the paraffin plug is 0 6 z 6 H and its cross-sectional dimension is such that the plug completely fills
the space between the pipes. The inner radius of the coaxial line is denoted by R1 and its outer radius is denoted
by R2. In the plane z = 0, there is a source of electromagnetic radiation with frequency f and power P .

The operation law of the HF source is described by the function ϕ(t). In the case of periodic operation, the
function ϕ(t) is defined by
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ϕ(t) =

{
1, nτ < t < τ∗ + nτ,

0, τ∗ + nτ < t < (n+ 1)τ,
(1)

where τ is the cycle time and τ∗ is the duration of continuous-wave operation of the electromagnetic radiation source
in a cycle. The electromagnetic wave propagating along the coaxial line attenuates, which leads to energy release
in the dielectric medium. The energy density is given by [4]
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where ε′ and ε′′ are the real and imaginary parts of the complex permeability ε = ε′ + iε′′, c and is the speed
of light in vacuum, and σ is the conductivity of the metal of which the wellbore pipes are made. In contrast to
the expression given in [3], expression (2) takes into account the actual electromagnetic-field distribution over the
cross section of the coaxial line and additional wave attenuation in the metal walls. The coefficient αV describes
the volume attenuation of the electromagnetic wave due to the presence of the imaginary part of the complex
permeability of paraffin, and αS is the electromagnetic-wave attenuation in the metal walls of coaxial pipes due
to the finite conductivity of the metal [5], by virtue of which energy is released on the inner surface of the metal
conductors. The surface density of the thermal power released in the pipe walls is defined by

qi =
√
ε′

√
f

σ

Pϕ(t)
4πR2

i ln (R2/R1)
exp (−(αV + αS)z) (i = 1, 2). (5)

Here i = 1 and 2 correspond to the inner and outer conductors, respectively.
The temperature distribution in the plug is described by the heat-conduction equation. In the numerical

solution below, the method of through counting [6] is used and, therefore, the heat-conduction equation is written
in general form without explicit separation of phases:
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Here ρ, cT , and λ are, respectively, the density, heat capacity, and thermal conductivity of high-paraffin oil. The
density and thermal conductivity are considered independent of temperature, and the heat capacity has a δ-shaped
singularity at the phase-transition temperature Ts:

cT = c0 + Lδ(T − Ts). (7)

Here L is the latent heat of the phase transition and δ(x) is the Dirac delta function.
The heat-conduction equation (6) should be supplemented by boundary conditions. At the plug end z = 0,

we impose boundary conditions in the form of heat convection under Newton’s laws

λ
∂T

∂z

∣∣∣
z=0

= æ1[T (r, 0, t)− T0], (8)

where T0 is the initial temperature of the paraffin equal to the ambient temperature. At the remote end of the plug
z = H there is no heat exchange:

λ
∂T

∂z

∣∣∣
z=H

= 0. (9)

On the side surface of the outer cylinder r = R2, the boundary conditions is specified in the form of
the heat-convection law with a different heat-exchange coefficient æ. In this case, surface heat release due to
electromagnetic-wave attenuation in the metal pipe walls is taken into account (5):

−λ ∂T
∂r

∣∣∣
r=R2

= æ[T (R2, z, t)− T0]− q2(z, t). (10)

The inner surface of the coaxial line r = R1 is assumed to be heat insulated. With allowance for surface heat
release, the boundary condition on the inner surface is given by
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Fig. 1. Position of isotherms for continuous heating regime at t = 2.5 (a), 7 (b), and 12 h (c).

λ
∂T

∂r

∣∣∣
r=R1

= −q1(z, t). (11)

Thus, the heat-conduction equation (6), boundary conditions (8)–(11), and the expressions for the power density
of the volumetric and surface heat releases completely describe the variation of temperature distribution in the
wellbore equipment in the case of periodic heating of the plug by the HF source described by the function ϕ(t).
It should be noted that the physical pattern of heating and melting of the plug depends weakly on the boundary
conditions at the ends because heat is lost primarily through the side surface of the outer pipe.

Numerical Simulation of the Elimination of a Paraffin Plug. To simulate the elimination of a paraffin
plug, we assume that an oil well is equipped with a pumping-compressor pipe of inner radius R1 = 0.018 m and
outer radius R2 = 0.05 m and the paraffin plug has a length of H = 100 m. The thermal parameters of high-paraffin
oil are as follows: ρ = 950 kg/m3, c0 = 3 kJ/(kg · K), Ts = 50◦C, L = 300 kJ/kg, and λ = 0.125 W/(m · K). The
ambient temperature is T0 = 20◦C. The real and imaginary parts of the complex dielectric constant ε are assumed
to depend weakly on the operating frequency of the HF source. In the numerical calculations, we use ε = 2.3 and
δ = ε′′/ε′ = 0.021 [3]. At the left end of the pipe (z = 0), the heat-exchange coefficient æ1 = 0.2 W/(m2 · K),
and on the side surface of the outer cylinder, æ = 2.5 W/(m2 · K). The indicated value æ corresponds to thermal
contact of the outer pipe of the wellbore equipment with dry soil [3].

In the numerical solution of Eq. (6), δ-function in the expression for heat capacity (7) was approximated by a
step with a width of ∆ = 0.8◦C. Thus, it is assumed that in the temperature range |T−Ts| < ∆/2, melting proceeds
in each elementary volume, i.e., the fluid and solid phases exist simultaneously. Ignoring thermal diffusivity, from
Eq. (6), we obtain the lower bound for the melting time:

∆tph ∼ Lρ/Q. (12)

As might be expected, the melting time does not depend on the method of “spreading” the δ-function. However, on
the one hand, the width of the melting zone ∆ should not be very small, in order that the melting time far exceed
the time step of the grid. On the other hand, the width of the step ∆ of the “spread” δ-function should not be too
large because, otherwise, there are large errors in determining the position of the melting front.

The melting time is minimal on the surface of the inner core pipe near the section z = 0. Substituting the
calculated parameter values into (12), we obtain ∆tmin

ph = 4.3 · 103 sec.
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TABLE 1

N τ∗, h ttot, h t′, h N τ∗, h ttot, h t′, h

2.00 14.75 12.75 2.00 20.00 14.00

1.00 16.00 13.00 1.00 20.00 14.00

1.25 0.50 16.00 13.00 1.5 0.50 20.50 14.00

0.25 16.00 13.00 0.25 20.75 14.00

0.125 16.00 12.875 0.125 20.75 13.875

2.00 17.50 13.50 2.00 33.50 17.50

1.00 17.50 13.50 1.00 34.25 17.25

1.33 0.50 17.25 13.25 2 0.50 34.50 17.50

0.25 17.25 13.00 0.25 34.00 17.00

0.125 17.50 13.125 0.125 33.75 16.875

Equation (1) was solved numerically using an explicit difference scheme on a uniform rectangular grid
∆t = 3.6 sec, ∆r = 8 · 10−4 m, and ∆z = 0.1 m.

The goal of the numerical analysis is to study the effect of the energizing period of the HF source (cycle
time) τ and the time of its continuous operation τ∗ (in a cycle) on the total time required to eliminate the paraffin
plug and the total operation time of the HF source. The total operation time of the HF source determines the
expenditure of energy at fixed power.

Obviously, periodic energizing and de-energizing of the HF source can have a significant effect on the elimi-
nation of the paraffin plug if the time interval during which the HF source is energized is close to or larger than the
characteristic time of thermal diffusion cρX2/λ (X is the characteristic transverse or longitudinal dimension of the
system). Otherwise, the problem of plug melting can be treated as the problem with a continuous-wave HF source
[4] but with equivalent power equal to the power averaged over the operation period of the HF radiation source.

All calculations were performed for an electromagnetic-radiation source with a power of P = 20 kW and a
frequency of f = 10 MHz.

Figures 1–3 shows isotherms of the paraffin plug for various times. Figure 1 corresponds to the continuous-
wave mode, and Figs. 2 and 3 correspond to periodic modes with continuous-wave operation times of the HF source
τ∗ = 2 and 1 h and values of the off-duty ratio N = τ/τ∗ = 1.5 and 2, respectively. The characteristic times for the
continuous-wave mode are chosen as follows: Fig. 1a shows the time during which the plug melts over the entire
length of the channel, Fig. 1b shows the time during which the plug melts over the entire cross section at the point
z = 0, and Fig. 1c shows the time required to eliminate the paraffin plug. For the periodic modes of operation of
the HF source, the times in Fig. 2a and b and in Fig. 3a and b are chosen from the same considerations as in Fig. 1a
and b. Figures 2c and 3c correspond to the time of elimination of the paraffin plug in the continuous-wave mode,
and Figs. 2d and 3d correspond to the time of elimination of the paraffin plug.

From analysis of Figs. 1–3 it follows that operation of the HF source in the periodic modes leads to a more
uniform heating of the plug and melted paraffin layers. The maximum temperature Tmax in the tested sample is
well below that for heating of the plug by the HF source operating in the continuous-wave mode. At an off-duty
ratio of N = 2 and τ∗ = 1 h, Tmax = 160◦C, and in the continuous-wave mode, Tmax = 220◦C. The total time of
elimination of the paraffin plug increases nonlinearly with increase in the off-duty ratio: ttot = 20 h for N = 1.5 and
ttot = 34.25 h for N = 2. In this case, the operation times of the HF source are t′ = 14 and 17.25 h, respectively.
In the continuous-wave mode of the HF source, the paraffin plug is eliminated within 12 h.

We note that with further increase in the off-duty ratio, the time of elimination of the paraffin plug increases
considerably and at N = 3 (P = 20 kW), and it is impossible to achieve complete melting of the plug. There is a
stationary state in which the heat release is compensated for by heat losses.

Table 1 gives results of numerical analysis for elimination of paraffin plugs by the HF source operating in
periodic modes for various values of the off-duty ratio and the time of operation of the HF source in a cycle.

To illustrate thermal diffusion and heat losses in the time interval between the energizing and de-energizing
of the HF source, Fig. 4 shows temperature distributions over the volume of the paraffin plug at N = 2 and τ∗ = 2 h.
It is evident that over the time interval in which the HF source is switched off, the maximum temperature decreased
by 38◦C and the temperature distribution became more uniform. The phase-transition surface practically did not
change position over the indicated time. A similar situation is observed for the case with N = 2 and τ∗ = 1 h.

683



Fig. 2. Position of isotherms at an off-duty ratio of N = 1.5 (τ∗ = 2 h) and t = 4 (a), 10.25 (b), 17 (c), and 20 h (d).

Fig. 3. Position of isotherms at an off-duty ratio of N = 2 (τ∗ = 1 h) and t = 8 (a), 14.25 (b), 23 (c), and 34.25 h (d).
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Fig. 4. Dynamics of cooling of the medium in the time interval between two pulses of the HF signal: t = 34 (a)
and 36 h (b).

Fig. 5. Time dependences of energy characteristics: curves 1–4 refer to W1, W2, W3, and W4, respectively; (a)
continuous-wave mode; (b) solid curves correspond to the continuous-wave mode at P = 13.33 kW and dashed
curves correspond to the periodic mode (N = 1.5 and τ∗ = 2 h); (c) solid curves refer to the continuous-wave
mode at P = 10 kW and dashed curves refer to the periodic mode (N = 2 and τ∗ = 1 h).

To determine the efficiency of the electromagnetic radiation source, it is necessary to know how its energy
is expended. The energy balance that follows from the differential heat-conduction equation (6) with boundary
conditions (8)–(11) and expressions (2)–(5) for volumetric and surface losses of electromagnetic-wave energy is
written as

W2 = W1 −W3 −W4,

where

W1 = P (1− exp (−λH))

t∫
0

ϕ(t′) dt′, W2 = ρ

∫
dV

T∫
T0

c(T ′) dT ′,
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W3 = 2πæR2

t∫
0

dt

H∫
0

[T (r = R2, z, t)− T0] dz, W4 = 2πæ1

t∫
0

dt

R2∫
R1

r[T (r, z = 0, t)− T0] dr.

The quantities Wi (i = 1, . . . , 4) have the following physical meaning: W1 is the energy absorbed in the volume of
the paraffin plug and the metal walls of the coaxial line, W2 is the enthalpy of the system, W3 are the energy losses
due to heat exchange on the surface of the outer pipe, and W4 are the energy losses at the end of the paraffin plug.

Figure 5 shows time dependences of the energy characteristics Wi for the continuous-wave and periodic
modes. It is evident that at an off-duty ratio of N = 2, the heat losses are comparable to the enthalpy of the system
at the end of elimination of the plug. Upon complete elimination of the plug, approximately half of the thermal
energy released in the plug is dispersed into the ambient medium. In a continuous-wave mode with N = 1.5, these
losses are much smaller.

From Fig. 5 it follows that in the continuous mode, approximately 40% of the HF oscillator energy is
expended in useful work. For an off-duty ratio N = 1.5, 35% of the input energy goes in elimination of the paraffin
plug, and for N = 2, this value is less than 30%.

It was noted above that the action of electromagnetic radiation on a paraffin plug under periodic operating
conditions of the HF source can be described as the action of a wave with constant amplitude and power averaged
over the operation period. For comparison, for a HF source with a power of P = 13.33 kW operating in the
continuous-wave mode and a HF source with P = 10 kW in the continuous-wave mode, the time characteristics Wi

are shown by solid curves in Fig. 5b and Fig. 5c respectively. It is evident that for a HF radiation source working in
a periodic mode and a source working continuously with power equal to the average power of the “periodic” source,
the times of elimination of paraffin plugs almost coincide.

Conclusions. The analysis of the elimination of paraffin plugs in the oil-well equipment by electromagnetic
radiation from a HF source operating in a periodic mode showed that the total time require to eliminate a plug
depends appreciably on the HF radiation power and the off-duty ratio of its operating cycle. At fixed power of
a HF source, the total time of elimination of a plug depends nonlinearly on the off-duty ratio. The total time of
operation of the HF source increases with increase in the off-duty ratio and depends weakly on the operation time
in a cycle. There is a threshold value of the off-duty ratio for which complete melting of a paraffin plug is never
reached. Thus, for a power of P = 20 kW and an off-duty ratio of N = 3, it is impossible to completely eliminate
a 100-m-long plug in the standard equipment of a well.
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